An abstract class that extends BaseChatModel and provides a simple implementation of _generate.

Type Parameters

Hierarchy (view full)

Constructors

Properties

ParsedCallOptions: Omit<CallOptions, never>
caller: AsyncCaller

The async caller should be used by subclasses to make any async calls, which will thus benefit from the concurrency and retry logic.

verbose: boolean

Whether to print out response text.

callbacks?: Callbacks
metadata?: Record<string, unknown>
name?: string
tags?: string[]

Accessors

Methods

  • Convert a runnable to a tool. Return a new instance of RunnableToolLike which contains the runnable, name, description and schema.

    Type Parameters

    Parameters

    • fields: {
          schema: ZodType<T, ZodTypeDef, T>;
          description?: string;
          name?: string;
      }
      • schema: ZodType<T, ZodTypeDef, T>

        The Zod schema for the input of the tool. Infers the Zod type from the input type of the runnable.

      • Optionaldescription?: string

        The description of the tool.

      • Optionalname?: string

        The name of the tool. If not provided, it will default to the name of the runnable.

    Returns RunnableToolLike<ZodType<T, ZodTypeDef, T>, BaseMessageChunk>

    An instance of RunnableToolLike which is a runnable that can be used as a tool.

  • Parameters

    • text: string

      The text input.

    • Optionaloptions: string[] | CallOptions

      The call options or an array of stop sequences.

    • Optionalcallbacks: Callbacks

      The callbacks for the language model.

    Returns Promise<string>

    A Promise that resolves to a string.

    Use .invoke() instead. Will be removed in 0.2.0.

    Predicts the next message based on a text input.

  • Generate a stream of events emitted by the internal steps of the runnable.

    Use to create an iterator over StreamEvents that provide real-time information about the progress of the runnable, including StreamEvents from intermediate results.

    A StreamEvent is a dictionary with the following schema:

    • event: string - Event names are of the format: on_[runnable_type]_(start|stream|end).
    • name: string - The name of the runnable that generated the event.
    • run_id: string - Randomly generated ID associated with the given execution of the runnable that emitted the event. A child runnable that gets invoked as part of the execution of a parent runnable is assigned its own unique ID.
    • tags: string[] - The tags of the runnable that generated the event.
    • metadata: Record<string, any> - The metadata of the runnable that generated the event.
    • data: Record<string, any>

    Below is a table that illustrates some events that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table.

    ATTENTION This reference table is for the V2 version of the schema.

    +----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+ | event | name | chunk | input | output | +======================+==================+=================================+===============================================+=================================================+ | on_chat_model_start | [model name] | | {"messages": [[SystemMessage, HumanMessage]]} | | +----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+ | on_chat_model_stream | [model name] | AIMessageChunk(content="hello") | | | +----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+ | on_chat_model_end | [model name] | | {"messages": [[SystemMessage, HumanMessage]]} | AIMessageChunk(content="hello world") | +----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+ | on_llm_start | [model name] | | {'input': 'hello'} | | +----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+ | on_llm_stream | [model name] | 'Hello' | | | +----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+ | on_llm_end | [model name] | | 'Hello human!' | | +----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+ | on_chain_start | format_docs | | | | +----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+ | on_chain_stream | format_docs | "hello world!, goodbye world!" | | | +----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+ | on_chain_end | format_docs | | [Document(...)] | "hello world!, goodbye world!" | +----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+ | on_tool_start | some_tool | | {"x": 1, "y": "2"} | | +----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+ | on_tool_end | some_tool | | | {"x": 1, "y": "2"} | +----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+ | on_retriever_start | [retriever name] | | {"query": "hello"} | | +----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+ | on_retriever_end | [retriever name] | | {"query": "hello"} | [Document(...), ..] | +----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+ | on_prompt_start | [template_name] | | {"question": "hello"} | | +----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+ | on_prompt_end | [template_name] | | {"question": "hello"} | ChatPromptValue(messages: [SystemMessage, ...]) | +----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+

    Parameters

    • input: BaseLanguageModelInput
    • options: Partial<CallOptions> & {
          version: "v1" | "v2";
      }
    • OptionalstreamOptions: Omit<EventStreamCallbackHandlerInput, "autoClose">

    Returns IterableReadableStream<StreamEvent>

  • Parameters

    • input: BaseLanguageModelInput
    • options: Partial<CallOptions> & {
          encoding: "text/event-stream";
          version: "v1" | "v2";
      }
    • OptionalstreamOptions: Omit<EventStreamCallbackHandlerInput, "autoClose">

    Returns IterableReadableStream<Uint8Array>

  • Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state.

    Parameters

    Returns AsyncGenerator<RunLogPatch, any, unknown>